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Abstract:  An  analytical  solution  method  is  presented  that  makes  it
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Введение

Мощность  объёмного  внутреннего  источника  тепла  (qv),

обусловленного выделением теплоты гидратации, изменяется во времени в

зависимости от температурного режима и коэффициента лучепоглощения

золоцементного изделия полиструктурного строения [1, с. 106].

Изменение  величины (qv)  во  времени при фиксированной средней

температуре  можно  приближённо  представить  в  виде  кусочно-

непрерывной функции ( r ) (рис. 1а)

    (1)

или в виде ломаной функции

q  (Vm-Vm-1)( -m)0(-m),         (2)

где 0(-m) - единичная функция Хевисайда, при 

________________________________________________________________

"Экономика и социум" №12(139) 2025                                     www.iupr.ru



 > i   0(-i) = 1, при  < i   0(-i) = 0; (3)

Vm -  скорость равномерного изменения мощности источника  q при  r-rm,

Вт/м3с;

m -  время  m-ого  изменения  мощности  источника  и  скоростей

равномерного подъема или спада мощности q (рис. 1 б).

 ( V_m ) — скорость равномерного изменения мощности источника

тепла  (  q  )  на  интервале  (  t_{m-1}  <  t  <  t_m  ),  Вт/м³·с;

(  t_m )  — момент изменения мощности источника тепла и скорости её

линейного возрастания или убывания (рис. 1б).

С учётом того, что

1,  > m

F(r) = qm0(-m), 0(x) = 0                (4)

0, <m

получаем изображение функции по Лапласу:

F(S) =  qmEXP(-sm)/S +             (5)

F(r) =  (Vm-Vm-1)( -m) 0(-m);

FS  =  (Vm-Vm-1)EXP(-sm)/S  +   

(6)

а)
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б)

                                                                Время, , ч.

Аппроксимация реальной кривой изменения мощности внутреннего

источника тепла ( q ): а — кусочно-непрерывной функцией; б — ломаной

функцией.
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Начальное  распределение  температуры  по  толщине

структурообразующего золоцементного изделия считается равномерным и

равным (t0). В начальный момент времени образец помещается в среду с

температурой (tc> t0), которая поддерживается постоянной в течение всего

процесса нагревания [2–4].

Требуется  определить  распределение  температуры  по  толщине

образца  и  тепловой  поток  в  любой  момент  времени  при  условии,  что

теплообмен с окружающей средой происходит по закону Ньютона.

Начало координат помещается в середину толщины пластины, при

этом её общая толщина равна  2l.  Внутри образца действует внутренний

источник тепла удельной мощности qv,  являющийся функцией времени [5,

6].

Математическая постановка задачи

Дифференциальное уравнение теплопроводности имеет вид:

dt(x,r)/d = a   drt(x,r)/dx2 + qv(r)/c;

( r >0, -  1 < x > 1)                                       (7)

при начальном условии

t(x,0 ) = t;        (8)

dt(0, ) = 0         (10)

dx - dt(l, )/dx + [/ tc - f(l,)] = 0.  (9)

и граничных условиях

В уравнении (7) удельная мощность источника тепла определяется

зависимостями (1) или (2).

Решение задачи

К уравнению (7) применяется интегральное преобразование Лапласа.

В результате получаем выражение для изображения температуры:
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.   (10)

Решение уравнения с учётом начального условия (8) имеет вид:

.    (11)

Постоянная  интегрирования  (  A  )  определяется  из  граничного

условия (10), которое в образах Лапласа принимает форму:

. (12)

После подстановки и преобразований получаем:

 , (13)

а при x = l

. (14)

В  результате  окончательное  выражение  для  изображения

температуры принимает вид:

 ; (15)

Переходя  к  оригиналу  функции,  получаем  распределение

температуры в виде:

  (16)

Частные режимы тепловой обработки
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В  случае  не  мгновенного,  а  плавного  подъёма  температуры

окружающей среды в первом периоде со скоростью

 (17)

температура в центре образца (t (x, ), определяется выражением:

  (18)

Во втором периоде — изотермической выдержки — температурное

поле описывается зависимостью:

 (19)

Если  рассматривается  не  мгновенный  подъем  температуры  на

границе  изделия,  а  постепенный,  то  для  первого  периода  подъема

температуры со скоростью [1. стр. 110.].

V=( tmax-t0) /0

имеем:

(20)
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а динамика температуры в точке x = 0 (посередине образца)

(21)

Для второго периода (изотермическая выдержка):

t(0,) = Vст - [(1-1,)-(1-1,)] + (k-k-1)(-k)[1-1(-k)]   (22)

Заключение

Полученные  аналитические  решения  для  нестационарного

температурного  поля  позволяют  качественно  оценить  влияние

коэффициента  лучепоглощения  солнечной  радиации  на  процесс

формирования  температурного  режима  в  изделиях  из  композиционных

строительных материалов.

Учёт  тепловыделения  при  экзотермической  реакции  твердения

вяжущего  вещества  в  сочетании  с  воздействием  солнечной  радиации

позволяет  более  точно  прогнозировать  температурные  поля  и

оптимизировать режимы гелиотеплохимической обработки золоцементных

материалов.
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