

УДК: 616.12-008+ 616.12-089

CONGENITAL HEART DISEASE OUTCOMES AND POSTOPERATIVE COMPLICATIONS: A REGIONAL STUDY FROM BUKHARA, UZBEKISTAN

Nodirabegim Kasimova, Assistant, Department of Pediatrics №2, Bukhara State Medical Institute, Bukhara, Uzbekistan

Abstract

This study analyzed the clinical and epidemiological characteristics of children following surgical correction of congenital heart defects in the Bukhara region of Uzbekistan. A retrospective analysis of 145 pediatric patients was conducted, assessing demographic characteristics, nutritional status, comorbidities, and postoperative complications. A high prevalence of malnutrition and cardiac arrhythmias was identified in the late postoperative period. A strong correlation was observed between patient age and the incidence of arrhythmias. These findings highlight the need for a multidisciplinary rehabilitation approach with emphasis on nutritional support and long-term cardiac monitoring.

Keywords: Congenital heart disease, postoperative complications, malnutrition, arrhythmias, Uzbekistan, global health.

ИСХОДЫ ВРОЖДЕННЫХ ПОРОКОВ СЕРДЦА И ПОСЛЕОПЕРАЦИОННЫЕ ОСЛОЖНЕНИЯ: РЕГИОНАЛЬНОЕ ИССЛЕДОВАНИЕ В БУХАРСКОЙ ОБЛАСТИ, УЗБЕКИСТАН

Нодирабегим Касымова, ассистент кафедры педиатрии № 2,
Бухарский государственный медицинский институт, Бухара, Узбекистан

Аннотация

В исследовании проанализированы клинико-эпидемиологические особенности детей после хирургической коррекции врожденных пороков сердца в Бухарской области Узбекистана. Ретроспективно изучены данные 145 пациентов с оценкой демографических характеристик, нутритивного статуса, сопутствующей патологии и послеоперационных осложнений. Установлена высокая распространенность дефицита питания и нарушений сердечного ритма в отдалённом послеоперационном периоде. Выявлена выраженная корреляция между возрастом пациентов и частотой развития аритмий. Полученные результаты подчеркивают необходимость мультидисциплинарного подхода к реабилитации с акцентом на нутритивную поддержку и длительный кардиологический мониторинг.

Ключевые слова:

врожденные пороки сердца, послеоперационные осложнения, нутритивная недостаточность, аритмии, Узбекистан, глобальное здравоохранение.

List of Abbreviations

CHD	Congenital Heart Disease
VSD	Ventricular Septal Defect
ASD	Atrial Septal Defect
ToF	Tetralogy of Fallot
PDA	Patent Ductus Arteriosus
BMI	Body Mass Index
CHF	Chronic Heart Failure
LMICs	Low- and Middle-Income Countries
WHO	World Health Organization

Introduction

Congenital heart disease (CHD) remains a leading cause of infant morbidity and mortality worldwide, representing a significant challenge for global health systems¹. While advancements in surgical techniques have dramatically improved early survival rates, the focus of pediatric cardiac care is shifting toward long-term outcomes and the quality of life of survivors^{2,3}. As highlighted in recent advocacy analyses, the success of a surgical program in low- and middle-income countries (LMICs) is measured not only by operative mortality but by the effectiveness of longitudinal follow-up and the implementation of robust public health frameworks^{1,4}.

In many LMICs, including the regions of Central Asia, geographical and socioeconomic factors significantly impact the post-surgical trajectory of pediatric patients^{5,6}. Challenges such as limited access to specialized cardiology centers in rural areas, severe nutritional deficiencies, and sociocultural factors can complicate the recovery process^{7,8}. Malnutrition, in particular, has been identified as a critical predictor of adverse outcomes in children with CHD, necessitating a paradigm shift toward multidisciplinary perioperative management and targeted nutritional support^{7,9,10}.

In Uzbekistan, the centralization of cardiac surgery has expanded access to life-saving procedures; however, the regional management and dispensary observation of these patients post-discharge remains a field requiring urgent optimization¹¹. The Bukhara region, characterized by a high proportion of rural residents and specific environmental conditions, presents a unique demographic for studying CHD outcomes¹². Understanding the prevalence of late-onset complications, such as cardiac rhythm and conduction disturbances, and their correlation with age and nutritional status is essential for developing regional rehabilitation protocols^{13,14}. These arrhythmias, often emerging long after the initial repair, remain a primary driver for late morbidity and potential reoperation^{15,16}.

This study aims to evaluate the clinical and epidemiological profile of children in the Bukhara region following surgical correction of CHD. By analyzing the intersection of nutritional status, late-onset arrhythmias, and environmental resources, we seek to identify strategies to

enhance the quality of medical rehabilitation and long-term surveillance in this specific population.

Methods

This retrospective observational study was conducted at the Bukhara Regional Children's Multidisciplinary Medical Center. The study period encompassed a comprehensive analysis of pediatric patients who had previously undergone surgical correction for various forms of congenital heart disease (CHD). The primary objective was to evaluate their clinical status, growth parameters, and the incidence of late postoperative complications in a regional setting.

A total of 145 pediatric patients (aged 0 to 18 years) were included in the study. Inclusion criteria were: (1) confirmed diagnosis of CHD; (2) history of surgical repair or palliation; (3) residency within the Bukhara region for at least one year post-surgery. Patients with incomplete medical records or those lost to follow-up were excluded from the analysis.

Data were systematically collected from inpatient medical histories, outpatient records, and structured interviews with parents during follow-up visits. The following parameters were analyzed:

- Demographics: Age, gender, and geographic location (rural vs. urban).
- Clinical Profile: Type of CHD (classified into cyanotic and acyanotic groups), presence of consanguineous marriage, and history of somatic comorbidities.
- Nutritional Assessment: Anthropometric measurements were taken to calculate the Body Mass Index (BMI). Nutritional status was classified according to WHO growth charts¹⁷.
- Postoperative Outcomes: Incidence of cardiac arrhythmias, chronic heart failure (CHF), and adherence to the national vaccination schedule.

Ethical integrity was maintained throughout the study, which received formal approval from the Institutional Ethics Committee of the Bukhara State Medical Institute (Protocol No: 9, from March 30, 2025). In strict adherence to the Declaration of Helsinki and the current healthcare legislation of the Republic of Uzbekistan^{18, 19}, written informed consent was secured from the parents or legal guardians of all 145 pediatric participants before their data was analyzed.

Statistical processing was performed using SPSS Statistics (Version 26.0). Descriptive statistics were used to summarize demographic and clinical data. Quantitative variables were expressed as mean \pm standard deviation (SD). For categorical data, frequencies and percentages were calculated. To assess the relationship between age and postoperative complications (arrhythmias), Spearman's rank correlation coefficient (ρ) was utilized. P-values less than 0.05 were considered statistically significant².

Results

The study cohort consisted of 145 patients (Table 1), with a slight male predominance (n=78, 53.8%). A striking majority of the patients (n=121, 83.4%) were residents of rural areas. Geographic analysis revealed that the highest number of patients originated from the Gijduvan (n=34, 23.4%) and Jondor (n=19, 13.1%) districts. Notably, consanguineous marriages were reported in 7.6% of families (n=11), highlighting a specific sociocultural risk

factor within the region that aligns with broader patterns discussed by Bokeria et al. and Hamamy^{5,20}.

Table 1. Demographic and Socio-Economic Profile of the Study Cohort (N=145)

Characteristic	n (%) or Mean ± SD
Gender	
Male	78 (53.8%)
Female	67 (46.2%)
Age at Follow-up (years)	7.4 ± 3.2
Residential Area	
Rural	121 (83.4%)
Urban	24 (16.6%)
Key Geographic Districts	
Gijduvan	34 (23.4%)
Jondor	19 (13.1%)
Bukhara City	17 (11.7%)
Others (10 districts)	75 (51.8%)
Social Risk Factors	
Consanguinity (Related parents)	11 (7.6%)
Suboptimal Vaccination Adherence	37 (25.5%)

The distribution of CHD types (Table 2) followed global trends for regional centers. The most frequent pathology was Ventricular Septal Defect (VSD), accounting for 21.4% (n=31) of cases, followed by Atrial Septal Defect (ASD) at 15.9% (n=23). Among cyanotic defects, Tetralogy of Fallot (ToF) was the most prevalent, representing 13.8% (n=20) of the cohort. This distribution is consistent with reports from other developing cardiac programs^{1,6} and aligns with regional epidemiological data for the Bukhara region provided by Navruzova et al. (2015), who also identified VSD as the leading acyanotic defect in the local pediatric population²¹. Other diagnoses included Patent Ductus Arteriosus (PDA) (11.0%) and complex combined defects (10.3%).

Table 2. Clinical Spectrum of Congenital Heart Defects (CHD)

Type of CHD	Absolute Number (n)	Percentage (%)
Ventricular Septal Defect (VSD)	31	21.4%
Atrial Septal Defect (ASD)	23	15.9%
Tetralogy of Fallot (ToF)	20	13.8%
Patent Ductus Arteriosus (PDA)	16	11.0%
Combined/Complex Defects	15	10.3%
Other	40	27.6%
Total	145	100.0%

Nutritional deficiency was a pervasive finding (Table 3). According to BMI analysis, 61.4% of children (n=89) suffered from malnutrition (BMI < 18.5). Statistical analysis demonstrated a significant correlation between low BMI and a higher incidence of postoperative complications (p = 0.0005). Furthermore, 75.0% of patients presented with at least one somatic comorbidity, with iron-deficiency anemia being the most common (37.9%), followed by neurological disorders (11.0%) and chronic tonsillitis (8.3%).

Table 3. Nutritional Status and Somatic Comorbidities

Parameter	Category	n	%
Nutritional Status (BMI)	Malnutrition (BMI < 18.5)	89	61.4%
	Normal Weight	56	38.6%
Comorbidities	Iron-Deficiency Anemia	55	37.9%
	Neurological Disorders	16	11.0%

	Chronic Tonsillitis	12	8.3%
	Gastrointestinal Diseases	11	7.6%
	No Comorbidities	36	24.8%

At the time of follow-up, 42 patients (28.9%) exhibited significant late-stage cardiac complications (Table 4). The leading issues were cardiac arrhythmias (31.0%), chronic heart failure (26.2%), and pulmonary hypertension (16.7%).

Table 4. Late Postoperative Complications and Statistical Correlations

Complication Type	Number of Cases (n=42)	Percentage (%)
Cardiac Arrhythmias	13	31.0%
Chronic Heart Failure (CHF)	11	26.2%
Pulmonary Hypertension	7	16.7%
Statistical Analysis	Metric	Value
Age vs. Arrhythmia Risk	Spearman's p	0.98 (p < 0.001)
Low BMI vs. Complications	Chi-square / p-value	p = 0.0005

A Spearman correlation analysis revealed a near-perfect positive relationship between the patient's age at follow-up and the manifestation of arrhythmias ($\rho = 0.98$, $p < 0.001$). This suggesting that electrical instability increases significantly as the post-surgical population ages, consistent with observations by Ganea²² and Sahu et al.²³.

Additionally, adherence to the national vaccination schedule was suboptimal, with 25.5% of children missing primary vaccinations due to medical contraindications or parental hesitancy.

Discussion

The results of this study highlight the complex interplay between clinical, nutritional, and regional factors influencing the long-term outcomes of pediatric patients after CHD correction in the Bukhara region.

One of the most concerning findings is the high prevalence of malnutrition (61.4% with BMI < 18.5). This rate is significantly higher than those reported in developed countries but aligns with data from other low- and middle-income countries (LMICs). For instance, Argent²⁴ and Skillman²⁵ emphasize that perioperative undernutrition is a major predictor of increased morbidity and prolonged recovery. Our finding of a strong statistical significance ($p = 0.0005$) between low BMI and postoperative complications underscores the urgent need for standardized nutritional support protocols in regional pediatric cardiac centers.

The near-perfect correlation between age and the incidence of arrhythmias ($\rho = 0.98$, $p < 0.001$) is a critical observation. This suggests that as the first cohorts of successfully operated children in the region reach adolescence, the burden of electrical instability and rhythm disorders increases exponentially. This phenomenon has been well-documented in long-term follow-ups of Tetralogy of Fallot patients^{26, 27}. The high incidence of late-onset arrhythmias in our cohort (31.0%) suggests that regional follow-up programs must prioritize long-term electrophysiological monitoring, especially as patients transition into adulthood.

The fact that 83.4% of our patients reside in rural areas poses a significant challenge for specialized rehabilitation. Geographic barriers often lead to suboptimal adherence to follow-up schedules and vaccination protocols (25.5% deviation in our study). Furthermore, the 7.6% rate of consanguinity, while typical for some parts of Central Asia, is a known risk factor for complex CHD presentations and associated genetic comorbidities²⁰. These findings suggest that a "one-size-fits-all" rehabilitation model is insufficient; instead, a community-based, multidisciplinary approach is required to bridge the gap between rural residences and specialized centers.

Our findings in the Bukhara region present both striking similarities and notable divergences when compared to global benchmarks (Table 5):

1. Late-Onset Arrhythmias: Our observed correlation between age and arrhythmia incidence ($\rho = 0.98$) mirrors the long-term data from the Mayo Clinic and Boston Children's Hospital, where late-onset rhythm disturbances in Tetralogy of Fallot survivors typically peak during the second decade of life. However, while global studies often attribute this to surgical scarring alone (Ganea et al., 2023)²², our data suggests that in LMIC settings, chronic malnutrition may accelerate this electrical instability.

2. Nutritional Burden: The 61.4% malnutrition rate in our cohort is significantly higher than reported in European or North American registries, where pediatric cardiac cachexia is strictly managed through early aggressive enteral nutrition. Our results are more closely aligned with data from India²⁸ and Brazil²⁹, where preoperative undernutrition remains a primary predictor of prolonged mechanical ventilation and late morbidity.

3. Socio-Geographic Barriers: Unlike the centralized models in Russia reported by the Bakulev Center⁵ where geographic availability is a logistical issue, our study highlights that in Bukhara, the high rural density (83.4%) combined with sociocultural factors like consanguinity (7.6%) creates a unique 'risk cluster' that is not typically seen in Western populations.

Table 5. Comparative analysis of postoperative outcomes: Bukhara vs. International cohorts

Parameter	Bukhara Cohort (Our Study)	International Trends (LMICs)	Developed Centers (USA/EU)
Malnutrition Rate	61.4%	35–50% (India/Africa)	< 10%
Late Arrhythmias	31.0% (of complications)	20–30%	15–25% (longer follow-up)
Rural Residency	83.4%	40–60%	< 20%
Main Correlation	Age & BMI ($\rho = 0.98$)	Surgical Technique	Genetic Predisposition

Study Limitations

This study is limited by its retrospective nature and the reliance on medical records which may have inherent documentation gaps. Additionally, the sample size of 145, while representative for the Bukhara region, may not capture rarer complications or late-term outcomes in less common CHD types.

Conclusion

Postoperative management of congenital heart disease in the Bukhara region is characterized by a high burden of nutritional deficiencies and age-related complications. The significant correlation between increasing age and the incidence of cardiac arrhythmias ($\rho = 0.98$) highlights a critical need for long-term, specialized electrophysiological monitoring as this surgical cohort matures.

Furthermore, the high prevalence of malnutrition (61.4%) and its direct impact on postoperative morbidity ($p=0.0005$) necessitate the integration of aggressive nutritional rehabilitation into standard regional protocols. Given that over 80% of patients reside in rural areas, success in long-term outcomes will depend on creating a multidisciplinary bridge between regional specialized centers and primary rural healthcare providers.

Disclosures and Conflict of Interest The authors declare that this study was conducted without any financial, property, or intellectual aid from commercial sources. No funds, property, or technology used in this study were purchased, borrowed, or donated by commercial entities. The authors have no conflicts of interest to disclose.

Freedom of Investigation The authors affirm that they had full control over the study design, the methods used, the selection of outcome parameters, the analysis of data, and the production of the final written report. There are no undisclosed authors associated with this manuscript.

Artificial Intelligence Disclosure Statement During the preparation of this manuscript, the authors used AI-based tools (Gemini/Google) for the purpose of language editing, improving English grammar and style, and ensuring adherence to American English standards. After using these tools, the authors reviewed and edited the content as needed and take full responsibility for the accuracy and integrity of the final publication.

References:

1. Vervoort D, Zheleva B, Jenkins KJ, Dearani JA. Children at the Heart of Global Cardiac Surgery: An Advocacy Stakeholder Analysis. *World J Pediatr Congenit Heart Surg.* 2021;12(1):48-54. doi:10.1177/2150135120955189
2. Jacobs JP, Jacobs ML, Austin EH 3rd, et al. Quality measures for congenital and pediatric cardiac surgery. *World J Pediatr Congenit Heart Surg.* 2012;3(1):32-47. doi:10.1177/2150135111426732
3. Barach DP. Improving pediatric cardiac care with continuous quality improvement methods and tools. In: *Improving Patient Safety Through Teamwork and Team Training*. Springer; 2015. doi:10.1007/978-1-4471-6566-8_3
4. Hasan BS, Bhatti A, Mohsin S, et al. Recommendations for developing effective and safe paediatric and congenital heart disease services in low-income and middle-income countries: a public health framework. *BMJ Glob Health.* 2023;8(5):e012049. doi:10.1136/bmjgh-2023-012049
5. Bokeria LA, Milievskaya EB, Krupyanko SM, Manerova OA. Geographical availability of cardiology care to patients after surgical treatment of congenital heart disease. *Social Aspects of Population Health.* 2014;(4). Accessed September 1, 2014.
<https://vestnik.mednet.ru/content/view/580/30/>
6. Murala JSK, Karl TR, Pezzella AT. Pediatric Cardiac Surgery in Low-and Middle-Income Countries: Present Status and Need for a Paradigm Shift. *Front Pediatr.* 2019;7:214. Published 2019 Jun 13. doi:10.3389/fped.2019.00214
7. Argent AC, Balachandran R, Vaidyanathan B, Khan A, Kumar RK. Management of undernutrition and failure to thrive in children with congenital heart disease in low- and middle-income countries. *Cardiol Young.* 2017;27(S6):S22-S30. doi:10.1017/S104795111700258X
8. Ladak LA, Gallagher R, Hasan BS, Awais K, Abdullah A, Gullick J. Exploring the influence of socio-cultural factors and environmental resources on the health related quality of life of children and adolescents after congenital heart disease surgery: parental perspectives from a low middle income country. *J Patient Rep Outcomes.* 2020;4(1):72. Published 2020 Aug 28. doi:10.1186/s41687-020-00239-0
9. Silva-Gburek J, May K, Walvoord B, Lozano C, Coss-Bu JA. Perioperative Nutrition in Pediatric Patients with Congenital Heart Disease and Heart Failure. *Nutrients.* 2025;17(22):3609. Published 2025 Nov 19. doi:10.3390/nu17223609

10. Lim CYS, Lim JKB, Moorakonda RB, et al. The Impact of Pre-operative Nutritional Status on Outcomes Following Congenital Heart Surgery. *Front Pediatr.* 2019;7:429. Published 2019 Oct 23. doi:10.3389/fped.2019.00429

11. Gonchar MA. Improvement of dispensary observation of children after surgical correction. *Scientific Bulletins.* 2014.

12. Gupta P, Beam BW, Noel TR, et al. Impact of preoperative location on outcomes in congenital heart surgery. *Ann Thorac Surg.* 2014;98(3):896-903. doi:10.1016/j.athoracsur.2014.04.123

13. Bokeria LA, Zelenikin MA, Golukhova EZ, Batov SM. Cardiac rhythm and conduction disturbances in the early postoperative period after surgical correction of congenital heart defects in young children. *Annals of Arrhythmology.* 2012;(1). <https://cyberleninka.ru/article/n/narusheniya-ritma-serdtsa-i-provodimosti-v-rannem-posleoperatsionnom-periode-posle-hirurgicheskoy-korreksii-vrozhdennyh-porokov>

14. Sahu MK, Das A, Siddharth B, et al. Arrhythmias in Children in Early Postoperative Period After Cardiac Surgery. *World J Pediatr Congenit Heart Surg.* 2018;9(1):38-46. doi:10.1177/2150135117737687

15. Karamlou T, Silber I, Lao R, et al. Outcomes after late reoperation in patients with repaired tetralogy of Fallot: the impact of arrhythmia and arrhythmia surgery. *Ann Thorac Surg.* 2006;81(5):1786-1793. doi:10.1016/j.athoracsur.2005.12.039

16. Ganea G, Cînteză EE, Filip C, Iancu MA, Balta MD, Vătășescu R, Vasile CM, Cîrstoveanu C, Bălgrădean M. Postoperative Cardiac Arrhythmias in Pediatric and Neonatal Patients with Congenital Heart Disease—A Narrative Review. *Life.* 2023; 13(12):2278. <https://doi.org/10.3390/life13122278>

17. World Health Organization. *The WHO Child Growth Standards.* World Health Organization; 2006. <https://www.who.int/toolkits/child-growth-standards>

18. Decree of the President of the Republic of Uzbekistan. On measures to further improve the system of providing specialized medical care in the field of healthcare. July 28, 2021. No. PP-5199.

19. Law of the Republic of Uzbekistan. On the rights of persons with disabilities. October 15, 2020. No. ZRU-641.

20. Hamamy H. Consanguineous marriages : Preconception consultation in primary health care settings. *J Community Genet.* 2012;3(3):185-192. doi:10.1007/s12687-011-0072-y

21. Navruzova ShI, Manasova IS. Risk factors for the formation of congenital heart defects. *Vestnik KazNMU.* 2020;(4). [In Russian].

22. Ganea CA, Coroleucă CA, Kovacs E, et al. Long-term follow-up of arrhythmias in patients with operated congenital heart disease: a growing population challenge. *J Pers Med.* 2023;13(5):782. doi:10.3390/jpm13050782

23. Sahu A, Gupta SK, Mishra J, et al. Late arrhythmias after surgical repair of congenital heart disease: incidence and risk factors. *Indian Heart J.* 2018;70(suppl 3):S347-S352. doi:10.1016/j.ihj.2018.01.017

24. Argent AC, Ahrens J, Morrow BM, et al. Pediatric intensive care in South Africa: an account of making the best of what we have. *Paediatr Int Child Health.* 2014;34(4):298-314. doi:10.1179/2046905514Y.0000000145

25. Skillman HE, Wischmeyer PE. Nutrition therapy in the critically ill child. *Curr Opin Crit Care.* 2008;14(4):370-377. doi:10.1097/MCC.0b013e328305f377

26. Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. *Lancet.* 2000;356(9234):975-981. doi:10.1016/S0140-6736(00)02714-8

27. Khairy P, Aboulhosn J, Gurvitz MZ, et al. Arrhythmia burden in adults with congenital heart disease: projections for the next decade. *Circulation.* 2010;121(1):7-13. doi:10.1161/CIRCULATIONAHA.109.869693

28. Vaidyanathan B, Radhakrishnan R, Sarala A, et al. Impact of malnutrition on outcomes after pediatric cardiac surgery in a developing country. *Ann Pediatr Cardiol.* 2022;15(1):15-22. doi:10.4103/apc.apc_123_21

29. Rossaneis AR, de Souza Freire Machi AD, et al. Nutritional status and clinical outcomes in children after surgery for congenital heart disease. *Rev Paul Pediatr.* 2019;37(2):181-187. doi:10.1590/1984-0462/;2019;37;2;00007